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Abstract

The analysis of surface acoustic waves in elastic solids started from a semi-infinite isotropic elastic body with solutions

and techniques dated back to Lord Rayleigh. These solutions have explained the surface acoustic wave phenomena and

guided its engineering applications in many fields. Research work followed have been using the same semi-infinite model

with solution techniques for approximate and exact results in both analytical and numerical manners for many application

problems involving finite elastic solids. On the other hand, we have noticed that various two-dimensional theories, notably

plate theory by Mindlin, have been derived to study the bulk wave propagation in finite elastic solids like plates and bars

with satisfactory results. The lack of such a two-dimensional theory has made the analysis of surface acoustic wave

propagation in various waveguides primitive and difficult because the precise solutions cannot be obtained through any

analytical effort and numerical solutions are also difficult to obtain because of the complicated nature of problems. To

meet the need of a simplified analytical method for surface acoustic waves in finite elastic solids, we start the derivation

from the well-known three-dimensional solutions of semi-infinite elastic solids. Using exact solutions as the basis for the

two-dimensional expansion, we found that the usual procedure of dimension reduction works perfectly in this case because

the unknown wavenumber is eventually removed in the expansion process, and the depth of the solid is considered through

integration constants that are exponentially decaying functions of the wavenumber, which is to be specified. In addition,

we also found the two-dimensional equations give the exact phase velocity without corrections of any kind in the limiting

case in which the solid is semi-infinite. With these equations, two-dimensional solutions of mechanical displacements and

phase velocity can be obtained analytically from four coupled differential equations that are similar to Mindlin plate

equations. We demonstrated the applications of the two-dimensional theory with the analysis of surface waves in isotropic

elastic rectangular strips. The velocity and displacement results offer a chance to understand surface acoustic waves in

finite solids and the presence of overtone modes and transition zones.
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1. Introduction

Wave propagation in elastic solids has a long and rich history in elasticity, and branches based on the nature
of the waves, materials, applications, and other factors have been established in the course of research with
many different theories, methods, and solutions [1–4]. The basic theory and equations are generally derived
from infinite elastic solids, and we are also overwhelmed by the relatively simple, elegant, and useful equations
that can illustrate the characteristics and essential concepts of wave propagation and provide solutions for
various problems and applications. To apply the fundamental theory to practical problems arising from
various engineering applications, creative efforts have resulted in many approximate methods and theories
which can be used to study the wave propagation in finite elastic solids with equations of reduced dimension
and reasonably accurate results. One of the most popular research fields is the bulk acoustic wave propagation
in finite elastic plates, or the vibration of plates, which have been studied with various plate theories like the
classical plate [5], Mindlin plate [6,7], Lee plate [8,9], and others in elasticity and related solution techniques
[10]. The plate theories have been widely applied to many practical engineering problems like structural design
and analysis, and there are extensive research efforts in improving these theories with various considerations
of the static and dynamic behavior for specific applications. Indeed, the plate theories, methods, and solutions
are considered as a model approach to engineering problems, especially for wave propagation in solids, and
they can be expanded to cover problems that are different from bulk acoustic waves we are familiar with.
Actually, such efforts can be easily recognized, if the research work on using the same techniques to problems
of bars and beams by Mindlin and others [11,12] and some one-dimensional theories [13] are taking into
account.

One of the less popular but equally important problems is the surface acoustic waves in elastic solids, which
has been started by Load Rayleigh [1,2,14], and found applications in earthquake and lately electronic devices
widely used for frequency generation and reference. The initial study on the surface acoustic waves is done
with semi-infinite isotropic solids, and many later researchers, more or less, took the same approach and the
results based on three-dimensional elasticity and piezoelectricity equations are employed to study the surface
acoustic waves in solids and its unique nature and wave velocity. Practical applications of surface acoustic
waves are concentrated on resonators by anisotropic piezoelectric materials for frequency control purpose and
new devices like sensors and transducers [3,15–18], which are designed and built with simple analysis and
empirical estimation until recently, when the accurate analysis and modeling are being emphasized for fast,
accurate, and efficient design and performance improvement. Expectedly, the only available analytical method
is the three-dimensional elasticity equations which cannot be applied to finite solids without employing
numerical methods like the finite element method [19–24]. For other applications such as acoustic waves in
layered structures, which are widely used as key elements of intelligent or smart structures, extensive efforts
have been made through analytical but mostly numerical methods based with finite element techniques
[25–31], as detailed by Liu and Xi [19], for solutions to aid the analysis and design. Not surprisingly, even the
finite element method cannot handle the surface acoustic waves propagating in finite solids with complications
like the presence of periodic electrodes, which can be neglected in the vibration analysis, efficiently, because of
the high frequency and relatively large sizes in comparison to the wavelength. As a result, most of research
work is done with one period of the structure for simplicity and fast results in numerical computation [32,33].
Some efforts on analytical solutions are done with oversimplified equations with the acceptable assumption
that the relatively large sizes can justify the neglecting of width and depth variables in the equations [17,34–36].
Accuracy aside, we clearly see the lack of a two-dimensional theory for surface acoustic waves in finite solids
similar to plate theory for bulk acoustic waves in finite plates has made it very difficult to have a sophisticated
method and solutions for practical applications, thus posing an opportunity to develop such a theory to make
the surface acoustic wave analysis in an equally simple and accurate manner. This idea has come to our
research for a few years, and we found the solution to this challenging problem from the plate theories we are
familiar with, like Mindlin [6,7] and Lee [8,9].

With the objective of developing a two-dimensional theory specifically for surface acoustic waves in finite
elastic solids in mind, we turn to the two-dimensional theories [6–9] for bulk acoustic waves in elastic solids for
directions based on the assumption that there must exist a way to expand the displacements for the surface
acoustic waves in a manner similar to the high frequency vibrations of plates. Of course, we need to find the
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important basis functions so the two-dimensional expansion can be made properly to handle exponential
decaying displacements in depth and the dispersive nature of surface acoustic waves in finite solids. This
requirement, i.e. the best approximation of propagation along the depth direction, comes from a direct
observation from plate theories because the essential consideration in the development of plate theories is the
accurate representation of thickness deformation. This has been the starting point of the devise of plate
theory, because both Mindlin and Lee plate theories [6–9] can handle the thickness deformation well,
especially the thickness-shear displacements which are important in applications. The selection of power series
and trigonometric functions is for the best representation of the thickness-shear deformation and the related
vibration frequencies. It is not difficult to imagine that the right expansion function can only come from a
close examination of surface acoustic wave solutions, just like in the plate theories the deformation of
important vibrations modes are from a direct observation of the three-dimensional exact solutions, where the
thickness-shear mode and its overtone modes are well represented by either a linear or trigonometric function
of the thickness coordinate. This is a basic principle for the development of two-dimensional theories, and one
of the closest applications of this beside the familiar plate theories is the eigenmode expansion method for the
vibrations of crystal plates by Peach [37]. In this study, we also start from this basic principle and apply it to
surface acoustic waves, which differ from plate vibration problems, or bulk acoustic waves, in some basic
aspects but the derivation is actually very close.

Through solving three-dimensional elasticity equations specifically for surface acoustic waves by assuming
displacements decay exponentially along the depth coordinate, we obtain the parameters related to
exponential functions, or the decaying parameters, for all displacements. With these known parameters, we
can obtain the velocity of surface acoustic waves in semi-infinite solids by applying the traction-free boundary
conditions on the free surface. This is the well-known procedure for surface acoustic waves in semi-infinite
solids, and this is our starting point for the two-dimensional theory derivation, which will utilize the decaying
parameters to represent the exponentially decaying displacements in finite solids. It is natural to assume that in
a finite solid, existing surface acoustic waves will also have displacements decaying along the depth, or
thickness, coordinate exponentially, and the precise determination of parameters of these decaying functions
are critical for the accurate representation of the nature of waves. It is apparent that these parameters cannot
be decided analytically, because the determination of the displacement variation in a finite body is something
we are trying to achieve by looking beyond the three-dimensional elasticity equations we are familiar with. On
the other hand, the essence of Mindlin and Lee plate theories [6–9] are that the complicated deformation of a
finite elastic body can be approximated by a series of functions that are close to the dominant modes we are
interested in. Starting with this important idea, and knowing that the important expansion functions in plate
theories are actually from the three-dimensional elasticity solutions of infinite elastic plates, we want to
explore the possibility to use the decaying functions from a semi-infinite solid for the deformation in a finite
one. In other words, we assume the displacement decaying in the depth or thickness direction of a finite solid is
the same as they are in semi-infinite solids. Since there are two decaying parameters, or two exponential
functions, in displacements of a semi-infinite solid, we can use the combination of the two functions in a
manner similar to Mindlin plate theory, i.e. assuming the depth or thickness dependence of the displacement
decaying is already known, and we need to follow the dimension reduction procedure used by Mindlin [6,7] for
the derivation. As we know, the discrepancy of the true displacement variation in the depth or thickness
direction should be compensated by the presence of integration constants and multiple equations, and possibly
correction factors also, in plate theories. This approach and basic principle outlined here are closely related to
Mindlin and Lee plate theories [6–9], and they are going to be adopted and followed in the derivation, thus
establishing the foundation of the two-dimensional theory for surface acoustic waves in finite elastic solids.
The solution method related to this two-dimensional theory will also be similar to those of the plate theories.
This will be demonstrated in later sections as we carry out the derivation and related operations successively.

2. Surface acoustic waves in isotropic semi-infinite solids

Surface acoustic wave was discovered in a semi-infinite elastic solid with displacements in depth direction
decaying exponentially along the depth coordinate, or the waves are confined in the surface of solids. The
derivation of the basic equations for the wave propagation and their solutions can be found in many popular



ARTICLE IN PRESS

X

Z

O

�, �, �, �,

Fig. 1. A semi-infinite isotropic solid.
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textbooks such as Achenbach [1] and Graff [2], and we present the results here briefly to enhance the
description of the principle and method we shall use in this study.

For the surface acoustic wave solutions in a semi-infinite isotropic elastic solid, or a half-space, as shown in
Fig. 1, the procedure demonstrated by Victorov [14] and Achenbach [1] assumes the three displacements are

u1 ¼ Aekbzeik x�ctð Þ; u2 ¼ 0; u3 ¼ Bekbzeik x�ctð Þ, (1)

where uj j ¼ 1; 2; 3ð Þ;A;B;b; k; c and t are displacements, amplitudes of displacements, decaying index,
wavenumber, phase velocity, and time, respectively. It is important to note that we have the wavenumber k

in the exponential term of z coordinate explicitly, highlighting the need to have the decaying parameter as an
independent variable in the equations. This appearance is different from the textbooks [1,2] because we want
to signify the importance of the parameters and the related physical insights.

With displacement solutions given in Eq. (1), we have the stress components of isotropic materials, in Lamé
material constants and abbreviated notations, as

T1 ¼ k lþ 2mð ÞiAþ lbB½ �ekbzeik x�ctð Þ,

T3 ¼ k liAþ lþ 2mð ÞbB½ �ekbzeik x�ctð Þ,

T5 ¼ km bAþ iBð Þekbzeik x�ctð Þ. ð2Þ

The stress equations of motion, in this case with the disappearance of the transverse displacement, are

T1;1 þ T5;3 ¼ r €u1; T5;1 þ T3;3 ¼ r €u3, (3)

where r is the density of material.
Substituting Eq. (2) into Eq. (3), we can rewrite the equations to

k2 b2c2T þ c2 � c2L
� �� �

Aþ ik2b c2L � c2T
� �

B ¼ 0,

ik2b c2L � c2T
� �

Aþ k2 b2c2L þ c2 � c2T
� �� �

B ¼ 0, ð4Þ

with

c2L ¼
lþ 2m

r
; c2T ¼

m
r
, (5)

defined as the longitudinal and transverse wave velocities of the material, respectively.
By solving Eq. (4) for the decaying index b, we have two neat and elegant solutions

b21 ¼ 1�
c2

c2L
; b22 ¼ 1�

c2

c2T
, (6)

and the corresponding amplitude ratios

B

A

� �
1

¼ �ib1;
B

A

� �
2

¼
1

ib2
. (7)

As we already know, they represent the longitudinal and transverse modes of surface acoustic waves
propagating in solids, respectively. The phase velocity c is to be determined by boundary conditions of the free
surface.
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Then the solutions of displacement and stress based on Eqs. (6) and (7) are:

u1 ¼ A1e
kb1z þ A2e

kb2z
� �

eikðx�ctÞ,

u3 ¼ �ib1A1e
kb1z þ

1

ib2
A2e

kb2z

� �
eikðx�ctÞ,

T1 ¼ ik lþ 2mð Þ � lb21
� �

A1e
b1z þ 2mA2e

kb2z
	 


eikðx�ctÞ,

T3 ¼ ik l� lþ 2mð Þb21
� �

A1e
b1z � 2mA2e

kb2z
	 


eikðx�ctÞ,

T5 ¼ km 2b1A1e
kb1z þ

1

b2
b22 þ 1
� �

A2e
kb2z

� �
eikðx�ctÞ, ð8Þ

where the amplitudes A1 and A2 are to be determined with boundary conditions.
Now applying the traction-free boundary conditions on the free surface

T3 ¼ T5 ¼ 0 for z ¼ 0, (9)

with the stresses in Eq. (8), we have

l� lþ 2Zð Þb21
� �

A1 � 2mA2 ¼ 0; 2b1A1 þ
1

b2
b22 þ 1
� �

A2 ¼ 0. (10)

This basically gives the familiar surface acoustic wave phase velocity equation

2�
c2

c2T

� �2

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c2

c2L

� �
1�

c2

c2T

� �s
, (11)

as the well-known Rayleigh surface waves [1,2,14].
It should be kept in mind that these solutions are for the exponentially decaying surface waves only. If the

negative roots are taken into consideration also, there will be terms exponentially growing by depth, leading to
solutions for infinite plates of finite thickness. It should be emphasized that there are only two displacement
modes with thickness dependence in surface acoustic waves in an isotropic semi-infinite solid.

The solutions, notably the decaying parameters given in Eq. (6) and the phase velocity in Eq. (11), are the
important results we are going to use in the development of our two-dimensional theory in different ways. The
decaying parameters, which define the exponentially decaying displacements along the depth coordinate, are
going to be used for the displacement representation in an expansion manner as in plate theories by Mindlin
[6,7], Lee [8,9], and Peach [37]. We take this approach because comparing with other possible expansion
schemes we think the solutions from three-dimensional solutions of semi-infinite solids are the best and closest
for the approximation of displacements in the thickness direction of a finite solid. In other words, the decaying
parameters and the corresponding exponential functions will be chosen as basis functions of the expansion in
next section. The exact velocity in Eq. (11) will be used as a reference to validate the resulting two-dimensional
equations.

3. Two-dimensional expansion of displacements

With the principle for the derivation of the two-dimensional theory outlined in detail and the three-
dimensional solutions of surface acoustic waves in a semi-infinite elastic solid presented in the previous
section, we can easily go to next step, which is to expand the displacements in a finite elastic solid with known
decaying functions from the same material. Since we have decaying functions as two exponential functions
associated with decaying indices b1 and b2 in Eq. (6), the displacements now are

uj x; y; z; tð Þ ¼
X2
n¼1

u
nð Þ

j x; y; tð Þ ekbnz; j ¼ 1; 2; 3, (12)

where u
ðnÞ
j are the higher-order displacement components which are functions of plane coordinates and time

only. This is to say that we expand the displacements in the z-direction with solutions in a half-space in a
manner similar to two-dimensional plate theories with characteristic expansion functions for deformation in



ARTICLE IN PRESS
J. Wang, K.-y. Hashimoto / Journal of Sound and Vibration 295 (2006) 838–855 843
the thickness direction based on solutions of infinite plates. Since our exponential functions are from semi-
infinite solids, this approximation is valid for cases the solid is semi-infinite or the thickness is large. In case the
solid is anisotropic, there will be more expansion modes [38]. For complications such as anisotropic and
piezoelectric materials and thin metal layers, similar two-dimensional equations have been established and
utilized [39,40].

Actually from Eq. (12), the expansion functions

j1 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=c2

Lð Þ
p

kz; j2 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=c2

Tð Þ
p

kz, (13)

with known surface wave velocity c to be decided, represent two strongly coupled components of surface
acoustic wave variation functions present in the half-space. It is conceivable that the solutions in a finite body
can also be best represented by the combination of these two solutions, consistent with the observation that
there are two modes in Rayleigh waves. For finite solids, it is a fact that there are many wave modes due to
interactions on the surfaces, but it is also reasonable to assume that there will be two dominant modes in the
surface acoustic waves, and they are represented by Eq. (13). In addition, the exponential functions are valid
for large thickness. If the thickness is finite, there will be exponentially growing modes to be included also [41].

With known displacements in Eq. (12), the standard procedure for the derivation of two-dimensional plate
theories by Mindlin [6,7], Lee [8,9], and others [10] includes the variational equations of motion of elasticityZ 0

�h

dz

Z
A

Tij;i � r €uj

� �
duj dA ¼ 0; i; j ¼ 1; 2; 3, (14)

where h is the depth of the solid and A is the surface plane, as illustrated in Fig. 2. By substituting Eq. (12) into
Eq. (14) and carry out the integration, we have the two-dimensional equations of motion of the elastic solid as

X2
n¼1

Z
A

T
nð Þ

ij;i � kbnT
nð Þ
3j þ F

nð Þ
j � r

X2
m¼1

Amn €u
mð Þ

j

 !
du

nð Þ
j dA ¼ 0; i; j ¼ 1; 2; 3. (15)

The two-dimensional equations and quantities appeared in Eq. (15) are

T
nð Þ

ij;i � kbnT
nð Þ
3j þ F

nð Þ
j ¼ r

X2
m¼1

Amn €u
mð Þ

j ; i; j ¼ 1; 2; 3,

T
nð Þ

ij ¼

Z 0

�h

Tije
kbnz dz; F

nð Þ
j ¼ T3j 0ð Þ � e�kbnhT3j �hð Þ,

Amn ¼
1

k bm þ bn

� � 1�
1

e bmþbnð Þkh

� �
; m; n ¼ 1; 2. ð16Þ

Not surprisingly, we find the equations and the quantities in Eq. (16) are very close to similar systems from both
Mindlin [6,7] and Lee [8,9] plate theories except some specific terms related to the basis functions, which are
exponential in this study, such as the higher-order stress T

nð Þ
ij , face-traction F

nð Þ
j , and integration constants Amn.
A

S

n

Y(X2)

X(X1)

Z(X3)

A ’

h

�

Fig. 2. An elastic plate configuration.
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This is expected because the derivation process is based on the same variational equations of motion, which is
the foundation for plate theories also. The simplicity of basis functions actually makes the two-dimensional
equations and quantities having simpler appearances for easy interpretation of the physics insight and further
derivation. It is important to note that the integration constants are dependent on wavenumber k, a
phenomena which is new in comparison to plate theories of Mindlin and Lee [6–9]. Of course, this is directly
linked to the appearance of wavenumber in basis functions, and it is vital to explore the way to make the
integration constants explicit to facilitate applications of the equations.

Now for given depth h, from Eq. (16) we have

Amn ¼
1

k bm þ bn

� � 1�
1

e bmþbnð Þkh

� �

¼
1

k bm þ bn

� � 1�
1

e2p bmþbnð ÞH

� �
; m; n ¼ 1; 2. ð17Þ

Note we use the relationship

H ¼
h

z
; kz ¼ 2p, (18)

here to simplify Eq. (17). In any case, if the wavelength z or wavenumber k is given, we can evaluate the
integration constants with the relationship in Eq. (17). As H is large enough or even approaches to infinity,
Amn will be constants independent of the depth ratio as

Amn ¼
1

k bm þ bn

� � ; m; n ¼ 1; 2, (19)

with a simple relationship of wavenumber k and decaying parameters bn n ¼ 1; 2ð Þ. It is also important to note
that the wavenumber will no longer appear as an unknown when the larger depth of solid is specified to neglect
the exponential terms. Also the explicit appearance of wavenumber k in the denominator is significant because
this is the key step in the elimination of the wavenumber in the two-dimensional equations. We also need to
emphasize again that the thickness of the substrate will be an important parameter in the equations. Since we
know that surface waves diminish essentially beyond three wavelengths, we can safely predict that such two-
dimensional equations will be a good approximation for problems in which the substrate thickness is larger
than three wavelengths.

With the two-dimensional equations and quantities derived and defined, now we return to Eq. (12) for strain
components in two-dimensional variables, like we have seen in the plate theories. By following the definition
of strain tensor in elasticity, we have

Sij ¼
1

2
ui;j þ uj;i

� �
¼
X2
n¼1

ekbnzS
nð Þ

ij ,

S
nð Þ

ij ¼
1

2
u

nð Þ
i;j þ u

nð Þ
j;i

� �
þ kbn d3ju

nð Þ
i þ d3iu

nð Þ
j

� �h i
; i; j ¼ 1; 2; 3; n ¼ 1; 2. ð20Þ

By substituting Eq. (20) into Eq. (16), we have the higher-order stress components in two-dimensional
variables and abbreviated notation for general anisotropic materials as

T nð Þ
p ¼

Z 0

�h

cpqSqe
kbnz dz ¼

X2
m¼1

AmncpqS mð Þ
q ; p; q ¼ 1; 2; 3; 4; 5; 6; n;m ¼ 1; 2; (21)

where cpq are elastic constants of a general anisotropic solid.
Through expansion, this will be

T nð Þ
p ¼

X2
m¼1

Amn cp1u
mð Þ
1;1 þ cp2u

mð Þ
2;2 þ kbmcp3u

mð Þ
3 þ cp4 u

mð Þ
3;2 þ kbmu

mð Þ
2

� �
þ cp5 u

mð Þ
3;1 þ kbmu

mð Þ
1

� �
þ cp6 u

mð Þ
2;1 þ u

mð Þ
1;2

� �h i
:

(22)
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It is important to note that the integration constants do not disappear for a particular order of equations,
thus leading to the strong coupling of terms. Fortunately, the expansion is done only for two terms, so the
coupling do not introduce the unlimited number of terms which require a truncation procedure as we have
seen in plate theories [6–9]. On the other hand, the cancellation of some terms due to the disappearance of
integration constants as an advantage of decoupling in plate theories cannot be utilized here either. What
makes this different from plate theories is that there are only two basis functions, and the variables are
strongly coupled due to the properties of expansion functions, implying there is no need to employ a
truncation procedure in the system.

4. Two-dimensional equations

We now have the framework of the two-dimensional theory for surface acoustic waves in finite elastic solids,
resembling the popular plate theories by Mindlin, Lee, and others [6–10]. These equations, with two sets of
strongly coupled two-dimensional displacement variables, are complete for the surface acoustic waves
propagating in finite elastic solids with large thickness. It should be pointed out that we have not made any
assumption on material properties, thus implying its applicability to anisotropic materials we can think of, as we
have demonstrated in Eqs. (21) and (22). To make these equations easy to understand and demonstrate the
fundamentals of the two-dimensional theory, we need to recapitulate them in a systematic manner. Besides, these
equations need to be examined for their accuracy in comparison with the three-dimensional theory of elasticity.

For these reasons, we shall derive the complete equations with isotropic materials for simplicity and make
comparison with three-dimensional solutions. A formal expansion to anisotropic material is implied, and a
particular derivation has been devoted to certain cuts of quartz crystal for their applications in surface
acoustic wave resonator modeling by Wang and Hashimoto [38].

4.1. Strain– displacement relations

The strain-displacement relations in the two-dimensional formulation of elasticity equations with
exponential expansion functions are given in Eq. (20), and it is important to note that the decaying
parameters bn n ¼ 1; 2ð Þ appearing in the equations with the wavenumber together. This differs from the plate
theories significantly, because in those equations the expansion is done with functions of constant parameters.
However, as we shall demonstrate in derivations followed, these variables actually do not complicate the
equations, because we have explained the automatic cancellation of the wavenumber in two-dimensional
variables and equations for large thickness of the plate earlier.

Using the definitions of strains in Eq. (20), we can write out all of the components, again in abbreviated
notation, as

S
1ð Þ
1 ¼ u

1ð Þ
1;1; S

1ð Þ
2 ¼ u

1ð Þ
2;2; S

1ð Þ
3 ¼ kb1u

1ð Þ
3 ,

S
1ð Þ
4 ¼ u

1ð Þ
3;2 þ kb1u

1ð Þ
2 ; S

1ð Þ
5 ¼ u

1ð Þ
3;1 þ kb1u

1ð Þ
1 ; S

1ð Þ
6 ¼ u

1ð Þ
1;2 þ u

1ð Þ
2;1,

S
2ð Þ
1 ¼ u

2ð Þ
1;1; S

2ð Þ
2 ¼ u

2ð Þ
2;2; S

2ð Þ
3 ¼ kb2u

2ð Þ
3 ,

S
2ð Þ
4 ¼ u

2ð Þ
3;2 þ kb2u

2ð Þ
2 ; S

2ð Þ
5 ¼ u

2ð Þ
3;1 þ kb2u

2ð Þ
1 ; S

2ð Þ
6 ¼ u

2ð Þ
1;2 þ u

2ð Þ
2;1. ð23Þ

It is clear that for strains in Eq. (23) that only displacements of the same order appear, which is another
important feature concerning the coupling of terms in comparison with popular plate theories. This will
certainly simplify the cross-term coupling of the variables in equations significantly. Of course, as we stated
before, only two sets of variables are closely coupled, which does not have serious complicating effect on the
equations in comparison with Mindlin and Lee plate theories [6–9]. This is also true regarding to other
equations, like the stresses, in this study.

4.2. Stress– displacement equations

We have presented the two-dimensional stresses in strain components in Eqs. (21) and (22) for anisotropic
materials, and the following formulation will be done for isotropic materials. The actual equations for
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isotropic materials are simple and straightforward with the stress equations in Eqs. (21) and (22) and the two-
dimensional strain components in Eq. (23). With Lamé elastic constants, we present the following two-
dimensional stress components in displacements as

T
1ð Þ
1 ¼ A11 lþ 2mð Þu

1ð Þ
1;1 þ lu

1ð Þ
2;2 þ lkb1u

1ð Þ
3

j k
þ A21 lþ 2mð Þu

2ð Þ
1;1 þ lu

2ð Þ
2;2 þ lkb2u

2ð Þ
3

j k
,

T
1ð Þ
2 ¼ A11 lu

1ð Þ
1;1 þ lþ 2mð Þu

1ð Þ
2;2 þ lkb1u

1ð Þ
3

h i
þ A21 lu

2ð Þ
1;1 þ lþ 2mð Þu

2ð Þ
2;2 þ lkb2u

2ð Þ
3

h i
,

T
1ð Þ
3 ¼ A11 lu

1ð Þ
1;1 þ lu

1ð Þ
2;2 þ lþ 2mð Þkb1u

1ð Þ
3

h i
þ A21 lu

2ð Þ
1;1 þ lu

2ð Þ
2;2 þ lþ 2mð Þkb2u

2ð Þ
3

h i
,

T
1ð Þ
4 ¼ A11m u

1ð Þ
3;2 þ kb1u

1ð Þ
2

� �
þ A21m u

2ð Þ
3;2 þ kb2u

2ð Þ
2

� �
,

T
1ð Þ
5 ¼ A11m u

1ð Þ
3;1 þ kb1u

1ð Þ
1

� �
þ A21m u

2ð Þ
3;1 þ kb2u

2ð Þ
1

� �
,

T
1ð Þ
6 ¼ A11m u

1ð Þ
1;2 þ u

1ð Þ
2;1

� �
þ A21m u

2ð Þ
1;2 þ u

2ð Þ
2;1

� �
,

T
2ð Þ
1 ¼ A12 lþ 2mð Þu

1ð Þ
1;1 þ lu

1ð Þ
2;2 þ lkb1u

1ð Þ
3

j k
þ A22 lþ 2mð Þu

2ð Þ
1;1 þ lu

2ð Þ
2;2 þ lkb2u

2ð Þ
3

j k
,

T
2ð Þ
2 ¼ A12 lu

1ð Þ
1;1 þ lþ 2mð Þu

1ð Þ
2;2 þ lkb1u

1ð Þ
3

h i
þ A22 lu

2ð Þ
1;1 þ lþ 2mð Þu

2ð Þ
2;2 þ lkb2u

2ð Þ
3

h i
,

T
2ð Þ
3 ¼ A12 lu

1ð Þ
1;1 þ lu

1ð Þ
2;2 þ lþ 2mð Þkb1u

1ð Þ
3

h i
þ A22 lu

2ð Þ
1;1 þ lu

2ð Þ
2;2 þ lþ 2mð Þkb2u

2ð Þ
3

h i
,

T
2ð Þ
4 ¼ A12m u

1ð Þ
3;2 þ kb1u

1ð Þ
2

� �
þ A22m u

2ð Þ
3;2 þ kb2u

2ð Þ
2

� �
,

T
2ð Þ
5 ¼ A12m u

1ð Þ
3;1 þ kb1u

1ð Þ
1

� �
þ A22m u

2ð Þ
3;1 þ kb2u

2ð Þ
1

� �
,

T
2ð Þ
6 ¼ A12m u

1ð Þ
1;2 þ u

1ð Þ
2;1

� �
þ A22m u

2ð Þ
1;2 þ u

2ð Þ
2;1

� �
. ð24Þ

Again, as in the strain equations in Eq. (23), strong coupling of the two sets of two-dimensional
displacement components are exhibited. With Eq. (24), now it is clear that the stress equations in two-
dimensional displacement components will also be strongly coupled in a consistent manner.
4.3. Stress equations of motion

The successive sets of two-dimensional stress equations of motion in Eq. (16) can be expanded into six
equations as

T
1ð Þ
1;1 þ T

1ð Þ
6;2 � kb1T

1ð Þ
5 þ F

1ð Þ
1 ¼ A11r €u

1ð Þ
1 þ A21r €u

2ð Þ
1 ,

T
1ð Þ
6;1 þ T

1ð Þ
2;2 � kb1T

1ð Þ
4 þ F

1ð Þ
2 ¼ A11r €u

1ð Þ
2 þ A21r €u

2ð Þ
2 ,

T
1ð Þ
5;1 þ T

1ð Þ
4;2 � kb1T

1ð Þ
3 þ F

1ð Þ
3 ¼ A11r €u

1ð Þ
3 þ A21r €u

2ð Þ
3 ,

T
2ð Þ
1;1 þ T

2ð Þ
6;2 � kb2T

2ð Þ
5 þ F

2ð Þ
1 ¼ A12r €u

1ð Þ
1 þ A22r €u

2ð Þ
1 ,

T
2ð Þ
6;1 þ T

2ð Þ
2;2 � kb2T

2ð Þ
4 þ F

2ð Þ
2 ¼ A12r €u

1ð Þ
2 þ A22r €u

2ð Þ
2 ,

T
2ð Þ
5;1 þ T

2ð Þ
4;2 � kb2T

2ð Þ
3 þ F

2ð Þ
3 ¼ A12r €u

1ð Þ
3 þ A22r €u

2ð Þ
3 . ð25Þ

These equations are very close to those of plate theories except the strong coupling of two sets of variables
in both two-dimensional stress and inertia terms. It should be emphasized that in the cases we are interested
such as the determination of surface acoustic wave velocity in finite elastic solids, the face-traction
F

nð Þ
j j ¼ 1; 2; 3; n ¼ 1; 2ð Þ are not considered for the free upper and lower faces. However, if the excitation forces

on the surface through metal electrodes in resonators are to be considered, the face-traction terms are directly
related to the alternative current and they are the input source for the forced vibrations. We leave these
discussions to the piezoelectric materials and electrodes to be studied in the future.
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4.4. Displacement equations of motion

With stress components in displacements in Eq. (24) and equations of motion in Eq. (25), a simple
substitution will give the following stress equations of motion in displacements

A11 lþ 2mð Þu
1ð Þ
1;11 þ A11mu

1ð Þ
1;22 � A11mk2b21u

1ð Þ
1 þ A11 lþ mð Þu

1ð Þ
2;21 þ A11 l� mð Þkb1u

1ð Þ
3;1

þ A21 lþ 2mð Þu
2ð Þ
1;11 þ A21mu

2ð Þ
1;22 � A21mk2b1b2u

2ð Þ
1 þ A21 lþ mð Þu

2ð Þ
2;21 þ A21 lb2 � mb1

� �
ku

2ð Þ
3;1 þ F

1ð Þ
1

¼ A11r €u
1ð Þ
1 þ A21r €u

2ð Þ
1 ,

A11mu
1ð Þ
2;11 þ A11 lþ mð Þu

1ð Þ
1;12 þ A11 lþ 2mð Þu

1ð Þ
2;22 þ A11 l� mð Þkb1u

1ð Þ
3;2 � A11mk2b21u

1ð Þ
2

þ A21mu
2ð Þ
2;11 þ A21 lþ mð Þu

2ð Þ
1;12 þ A21 lþ 2mð Þu

2ð Þ
2;22 þ A21 lb2 � mb1

� �
ku

2ð Þ
3;2 � A21mk2b1b2u

2ð Þ
2 þ F

1ð Þ
2

¼ A11r €u
1ð Þ
2 þ A21r €u

2ð Þ
2 ,

A11mu
1ð Þ
3;11 þ A11mu

1ð Þ
3;22 � A11 l� mð Þkb1u

1ð Þ
1;1 � A11 l� mð Þkb1u

1ð Þ
2;2 � A11 lþ 2mð Þk2b21u

1ð Þ
3

þ A21mu
2ð Þ
3;11 þ A21mu

2ð Þ
3;22 � A21 lb1 � mb2

� �
ku

2ð Þ
1;1 � A21 lb1 � mb2

� �
ku

2ð Þ
2;2 � A21 lþ 2mð Þk2b1b2u

2ð Þ
3 þ F

1ð Þ
3

¼ A11r €u
1ð Þ
3 þ A21r €u

2ð Þ
3 ,

A12 lþ 2mð Þu
1ð Þ
1;11 þ A12mu

1ð Þ
1;22 � A12mk2b1b2u

1ð Þ
1 þ A12 lþ mð Þu

1ð Þ
2;21 þ A12 lb1 � mb2

� �
ku

1ð Þ
3;1

þ A22 lþ 2mð Þu
2ð Þ
1;11 þ A22mu

2ð Þ
1;22 � A22mk2b22u

2ð Þ
1 þ A22 lþ mð Þu

2ð Þ
2;21 þ A22 l� mð Þkb2u

2ð Þ
3;1 þ F

2ð Þ
1

¼ A12r €u
1ð Þ
1 þ A22r €u

2ð Þ
1 ,

A12mu
1ð Þ
2;11 þ A12 lþ mð Þu

1ð Þ
1;12 þ A12 lþ 2mð Þu

1ð Þ
2;22 þ A12 lb1 � mb2

� �
ku

1ð Þ
3;2 � A12mk2b1b2u

1ð Þ
2

þ A22mu
2ð Þ
2;11 þ A22 lþ mð Þu

2ð Þ
1;12 þ A22 lþ 2mð Þu

2ð Þ
2;22 þ A22 l� mð Þkb2u

2ð Þ
3;2 � A22mk2b22u

2ð Þ
2 þ F

2ð Þ
2

¼ A12r €u
1ð Þ
2 þ A22r €u

2ð Þ
2 ,

A12mu
1ð Þ
3;11 þ A12mu

1ð Þ
3;22 � A12 lb2 � mb1

� �
ku

1ð Þ
1;1 � A12 lb2 � mb1

� �
ku

1ð Þ
2;2 � A12 lþ 2mð Þk2b1b2u

1ð Þ
3

þ A22mu
2ð Þ
3;11 þ A22mu

2ð Þ
3;22 � A22 l� mð Þkb2u

2ð Þ
1;1 � A22 l� mð Þkb2u

2ð Þ
2;2 � A22 lþ 2mð Þk2b22u

2ð Þ
3 þ F

2ð Þ
3

¼ A12r €u
1ð Þ
3 þ A22r €u

2ð Þ
3 . ð26Þ

These equations are the complete set of equations of the coupled two-dimensional displacement
components. All the equations in this section will be complete in comparison with the equations of elasticity
except all the variables are two-dimensional, just as in popular plate theories. For validation, as we can easily
consider, we need to check some simple results for the accuracy in some particular modes related to the surface
acoustic wave propagation.

4.5. Boundary conditions

With the establishment of two-dimensional equations, we now need to have the related boundary conditions
for these equations and the two-dimensional variables. Similar to the plate theories, the derivation of the
boundary conditions is also straightforward with the basic equations from the three-dimensional theory of
elasticity. To derive the boundary conditions related to the two-dimensional equations, we return to the
geometric configuration of a solid in Fig. 2. We start with the familiar boundary conditions on the cylindrical
surfaceZ 0

�h

Z
C

niTijduj dzds ¼

Z 0

�h

Z
C

niTij

X2
n¼1

du
nð Þ

j ekbnz dzds ¼
X2
n¼1

Z
C

niT
nð Þ

ij du
nð Þ

j ds ¼ 0; n ¼ 1; 2; i; j ¼ 1; 2; 3;

(27)

where C is the border curve of the faces, with thickness coordinate representing the cylindrical surface shown
in Fig. 2.
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Now it is clear from Eq. (27) that we need to specify either the traction terms T
nð Þ

ij n ¼ 1; 2ð Þ or the
displacement terms u

nð Þ
j on the cylindrical surface. The boundary conditions of the upper- and lower-face have

already been incorporated into the equations of motion through Eq. (16). Again, the boundary conditions are
also similar with Mindlin and Lee plate theories [6–9].

5. Straight-crested wave solutions

The two-dimensional equations in the previous section have established the foundation of the two-
dimensional theory for the analysis of surface acoustic waves in finite elastic solids. It is clear that this theory
offers an opportunity for the analysis that cannot be matched by other available approximations and methods,
thus providing a chance for more accurate results in a much efficient manner, as demonstrated in the finite
element analysis of bulk acoustic wave resonators with the Mindlin plate theory [42,43]. This, of course, is the
sole objective of this study.

Customarily, we start with the straight-crested solutions from the two-dimensional theory for analytical
solutions for cases where the effect of the width can be neglected. In addition, solutions from the straight-
crested waves can be used to make certain validations and corrections in limiting cases, as we have been
familiar with two-dimensional plate theories. This is certainly an important concern in our study, but so far we
have not touched the accuracy issue, although the importance cannot be over stated, yet.

We now examine the coupled straight-crested waves u
1ð Þ
1 ; u

2ð Þ
1 ; u

1ð Þ
3 and u

2ð Þ
3 , traveling along the x direction. As

in the semi-infinite case in Section 2, we only consider the in-plane displacements. For simplicity, and the
solutions are assumed as

u
1ð Þ
1 ¼ A1 sin kk̄x exp ikctð Þ; u

1ð Þ
3 ¼ A2 cos kk̄x exp ikctð Þ;

u
2ð Þ
1 ¼ A3 sin kk̄x exp ikctð Þ; u

2ð Þ
3 ¼ A4 cos kk̄x exp ikctð Þ;

(28)

where Ai i ¼ 1; 2; 3; 4ð Þ; k; k̄; c; and t, are amplitudes, wavenumber, associated wavenumber, velocity, and time,
respectively. The displacements u

nð Þ
2 n ¼ 1; 2ð Þ are not coupled with others, so we do not consider them here.

Note the usual circular frequency in the time factor has been replaced with kc here.
It should be emphasized that the associated wavenumbers k̄ only appear in the trigonometric function arguments

of x, not the time factor, thus only affecting the spatial variations of these displacements. This is anticipated because
the solutions in the depth or the thickness direction are almost known already with the exponential functions. The
allowed variations in the displacements are reflected in the amplitudes, which are constants, and the wavenumbers,
which can be complex, to accommodate the complicated mode shapes. These extra variables are the results of the
two-dimensional theory and the extra equations related to the appearance of the higher-order terms. On the other
hand, the solutions of this form will not change the velocity of wave propagation in the solids directly because the
essential relationship between wavenumber and frequency is preserved as before.

Now we substitute Eq. (28) into Eq. (27) and drop the face-traction terms for free vibrations with traction-
free faces, the four coupled equations of motion can be simplified to

A11 lþ 2mð Þk̄
2
þ mb21 � c2r

j k
A1 þ A11b1 l� mð Þk̄A2 þ A21 lþ 2mð Þk̄

2
þ mb1b2 � c2r

j k
� A3 þ A21 lb2 � mb1

� �
k̄A4 ¼ 0,

A11b1 l� mð Þk̄A1 þ A11 mk̄
2
þ lþ 2mð Þb21 � c2r

h i
A2 þ A21 lb1 � mb2

� �
k̄A3

þ A21 mk̄
2
þ lþ 2mð Þb1b2 � c2r

h i
A4 ¼ 0,

A12 lþ 2mð Þk̄
2
þ mb1b2 � c2r

h i
A1 þ A12 lb1 � mb2

� �
k̄A2 þ A22 lþ 2mð Þk̄

2
h

þmb22 � c2r
�

� A3 þ A22b2 l� mð Þk̄A4 ¼ 0,

A12 lb2 � mb1
� �

k̄A1 þ A12 mk̄
2
þ lþ 2mð Þb1b2 � c2r

h i
A2 þ A22b2 l� mð Þk̄A3

þ A22 mk̄
2
þ lþ 2mð Þb22 � c2r

h i
A4 ¼ 0. ð29Þ
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In matrix notation, Eq. (29) can be rewritten as

A11 lþ 2mð Þk̄
2
þ mb21 � c2r

h i
A11b1 l� mð Þk̄ A21 lþ 2mð Þk̄

2
þ mb1b2 � c2r

h i
A21 lb2 � mb1
� �

k̄

A11b1 l� mð Þk̄ A11 mk̄
2
þ lþ 2mð Þb21 � c2r

h i
A21 lb1 � mb2
� �

k̄ A21 mk̄
2
þ lþ 2mð Þb1b2 � c2r

h i
A12 lþ 2mð Þk̄

2
þ mb1b2 � c2r

h i
A12 lb1 � mb2
� �

k̄ A22 lþ 2mð Þk̄
2
þ mb22 � c2r

h i
A22b2 l� mð Þk̄

A12 lb2 � mb1
� �

k̄ A21 mk̄
2
þ lþ 2mð Þb1b2 � c2r

h i
A22b2 l� mð Þk̄ A22 mk̄

2
þ lþ 2mð Þb22 � c2r

h i

2
666666664

3
777777775

A1

A2

A3

A4

2
6664

3
7775 ¼ 0.

(30)

Now we consider a special case with Eq. (30). If the thickness of the solid h goes to infinity, it represents the
surface acoustic waves in the semi-infinite elastic solid we have studied before. If the theory represented by
Eq. (30) is accurate, the solution of wave velocity c should be the precise result from the three-dimensional
solution in Eq. (11). To verify this, we set the associated wavenumber k̄ to 1, and using the integration
constants given in Eq. (19) with Eq. (30). Since boundary conditions on the free surface are already
incorporated into the equations in Eq. (30), we now have a case that the two-dimensional theory should
confirm the three-dimensional results, otherwise we have to correct the equations systematically. Not
surprisingly, through solving Eq. (30) for the wave velocity c, we find it is indeed the precise wave velocity of
the semi-infinite elastic solids, proving that the two-dimensional theory can handle the limiting case with
accuracy. As a result, additional efforts in making necessary corrections are no longer needed. This is certainly
important to this study, because the equations without correction factors are more elegant and simple. For
surface acoustic waves, there are no specific vibration modes in comparison with plates, so the accuracy can
only be checked with this limiting case alone.

With Eqs. (28) and (30), we can solve for the associated wavenumbers for given material with known
decaying parameters, thus having the stresses as defined in Eq. (24). Since we only have displacement
components of two vibration modes, with time factor omitted, the associated wavenumbers from Eq. (30)
change Eq. (28) to

u
1ð Þ
1 ¼

X4
i¼1

A4ia1i sin kk̄ix
� �

; u
1ð Þ
3 ¼

X4
i¼1

A4ia2i cos kk̄ix
� �

,

u
2ð Þ
1 ¼

X4
i¼1

A4ia3i sin kk̄ix
� �

; u
2ð Þ
3 ¼

X4
i¼1

A4i cos kk̄ix
� �

, ð31Þ

where the amplitude ratios are defined as

aij ¼
Aij k̄i

� �
A4j k̄i

� � ; i ¼ 1; 2; 3; j ¼ 1; 2; 3; 4. (32)

Consequently, the stress components defined in Eq. (24) will be

T
1ð Þ
1 ¼

X4
i¼1

A4ik lþ 2mð Þ A11a1i þ A21a3ið Þk̄i þ l A11b1a2i þ A21b2
� �� �

cos kk̄ix,

T
1ð Þ
5 ¼

X4
i¼1

A4imk � A11a2i þ A21ð Þk̄i þ A11b1a1i þ A21b2a3i

� �� �
sin kk̄ix,

T
2ð Þ
1 ¼

X4
i¼1

A4ik lþ 2mð Þ A21a1i þ A22a3ið Þk̄i þ l A21b1a2i þ A22b2
� �� �

cos kk̄ix,

T
2ð Þ
5 ¼

X4
i¼1

A4imk � A21a2i þ A22ð Þk̄i þ A21b1a1i þ A22b2a3i

� �� �
sin kk̄ix, ð33Þ

and the corresponding traction-free boundary conditions at the ends of a strip based on Eq. (27) are

T
1ð Þ
1 ¼ T

1ð Þ
5 ¼ T

2ð Þ
1 ¼ T

2ð Þ
5 ¼ 0 at x ¼ �a, (34)
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where a is the length of the strip. Again, we adopt a normalization scheme for the length coordinate as

X ¼
x

z
; kx ¼ 2pX ; kk̄ix ¼ 2pk̄iX . (35)

With boundary conditions in Eq. (34), we further have the displacement solutions in Eq. (31) as

u
1ð Þ
1 ¼

X4
i¼1

A44gia1i sin 2pk̄iX
� �

; u
1ð Þ
3 ¼

X4
i¼1

A44gia2i cos 2pk̄iX
� �

,

u
2ð Þ
1 ¼

X4
i¼1

A44gia3i sin 2pk̄iX
� �

; u
2ð Þ
3 ¼

X4
i¼1

A44gi cos 2pk̄iX
� �

,

gr ¼
A4r

A44
; r ¼ 1; 2; 3; 4, ð36Þ

where the amplitude ratios gr r ¼ 1; 2; 3; 4ð Þ are obtained from the boundary conditions in Eq. (34) with stress
equations in Eq. (33).

The above equations are adequate for the straight-crested wave analysis in a finite isotropic elastic strip. The
displacements and the phase velocity are the most important solutions for finite solids we are interested.

6. A numerical example

For a semi-infinite isotropic elastic solid with Poisson’s ratio n ¼ 0:20, the phase velocity of surface acoustic
waves is

c ¼ 0:91099cT . (37)

For two-dimensional analysis of surface acoustic waves in finite solids, the two decaying parameters defined in
Eq. (6) are used, but it should be reminded that the velocity is to be determined.

Now we can use the two-dimensional theory for the surface acoustic wave analysis in a finite solid. For this
particular material, we find the associated wavenumbers have a structure that has two real numbers include 1,
representing the dominant mode, and two imaginary numbers, representing two radiating terms along the
length direction. For a strip with given length ratio range and H ¼ 10, we have the phase velocity v ¼ c=cT ,
where the transverse wave velocity cT is defined in Eq. (5), versus the length to wavelength ratios calculated in
Fig. 3.

Similar to a finite plate, there are many velocity solutions representing different vibration modes. The
velocities or modes can be found in the transcendental equation from Eqs. (30) and (34) with typical root-
finding techniques like bisection method.

It is clear from Fig. 3 that there are many branches of surface acoustic waves in finite elastic solids, and the
phase velocity of each branch generally decreases with the increase of the length to wavelength ratio. The
multiple branches, or modes, of surface acoustic waves are the direct results of interactions of all surfaces, just
like bulk acoustic waves in finite plates. Each mode has slightly different properties in the displacement
amplitudes and their strain energy, in addition to the obvious different phase velocity we can see directly. This
is, of course, a known fact to us in plate theories in identifying the vibration modes and evaluating their
dominance at a particular frequency. This is important in practical applications because based on the semi-
infinite model we are used to, there will be no overtone modes shown in Fig. 3, and design parameters such as
the length to wavelength ratio might fall in the transition zone shown between 100.4 and 100.5, which could
cause velocity change in a unpredictable way with small perturbation of frequency or length, and these surface
wave features cannot be utilized at all. Such a mode conversion phenomena also exits in bulk acoustic waves,
and it is generally recognized that to obtain stable frequency, the design parameters should be selected based
on the frequency spectra, or the velocity spectra in our case, to avoid mode conversion zones, which appear
periodically in Fig. 3. The validation of Fig. 3 requires either the detailed calculation of vibration frequencies
in the strip or through experiments, but none of the above can be easily accomplished because there are too
many wave branches for us to identify. This challenge will have to be dealt with coordinated computational
and experimental approaches we are working on.
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Fig. 3. Surface acoustic wave normalized phase velocity versus length to wavelength ratio for a strip with normalized thickness H ¼ 10

and Poisson’s ratio n ¼ 0:2.
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To further examine the vibration modes in Fig. 3, we plot displacements u1 and u3 on the upper surface of
the strip of two representative modes designated as A and B in and out of the transition zone in Figs. 4–7.
Basically it is clear that one particular mode will gradually lower its phase velocity until it reaches to a point
that the mode properties approach to another one, and the conversion is completed by going through a
transition zone. Figs. 4 and 5 are displacements on surface of the strip inside the transition zone at point A in
Fig. 3, and for comparison we have displacements of another surface acoustic wave point B in Figs. 6 and 7.
By comparison, it is clear that mode A is a predominately transverse mode with relatively larger displacement
u3. In contrast, point B is a predominantly longitudinal mode with relatively larger displacement u1. The
fundamental differences of the modes are clearly shown, and this is important in knowing the inside of
complicated wave modes and frequency spectra, or velocity spectra, in Fig. 3. Similar to bulk acoustic waves,
the displacements and the velocity spectra will provide practical guidance in applications like device design,
including utilizing the overtone modes, which are not discussed and analyzed before due to limitations of the
semi-infinite model.

7. Conclusions

Using the three-dimensional solutions of surface acoustic waves in semi-infinite elastic solids, displacements
in finite elastic solids are expressed with known decaying functions in the depth or the thickness direction in a
manner similar to the popular higher-order plate theories of Mindlin, Lee, and others. Applying variational
equations of elasticity, the equations with two-dimensional variables are integrated over plane domain, thus
resulting a two-dimensional theory for surface acoustic waves in a finite strip with equations and solution
procedures resembling the plate theories also. Through validating the two-dimensional equations at a limiting
case where the thickness of the strip is set to infinity, we find the phase velocity solution is the same with the
equations of three-dimensional elasticity. It shows that there is no need to make corrections as we have used to
in plate theories, demonstrating the advantage in adopting such an expansion scheme and creating the
corresponding two-dimensional theory.
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Fig. 4. Displacement u1 of a strip with normalized phase velocity v ¼ 0:9094 and a=z ¼ 100:42 designated as A in Fig. 3. This is a

predominately transverse mode.

Fig. 5. Displacement u3 of a strip with normalized phase velocity v ¼ 0:9094 and a=z ¼ 100:42 designated as A in Fig. 3. This is a

predominately transverse mode.

J. Wang, K.-y. Hashimoto / Journal of Sound and Vibration 295 (2006) 838–855852



ARTICLE IN PRESS

Fig. 6. Displacement u1 of a strip with normalized phase velocity v ¼ 0:9071 and a=z ¼ 100:50 designated as B in Fig. 3. This is a

predominately longitudinal mode.

Fig. 7. Displacement u3 of a strip with normalized phase velocity v ¼ 0:9071 and a=z ¼ 100:50 designated as B in Fig. 3. This is a

predominately longitudinal mode.
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The applications of the two-dimensional theory can be found in many fields in which precise solutions of
surface acoustic wave propagating are required in a simple and efficient manner. By implementing this theory
with anisotropic materials and the consideration of complication factors like extra layer on the top, design and
analysis of electrical devices based on surface acoustic wave phenomena can be simplified with accurate and
efficient equations and solutions. The clear exhibition of the overtone modes in the velocity spectra is of great
importance in possible utilization of the higher-order modes. In addition, it shows that the general principle of
two-dimensional expansion and integration pioneered by Mindlin can be applied to elastic wave propagation
problems in other natures for new equations based on the dimension reduction and simplification of the three-
dimensional theory for emerging applications.
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